Kamis, 10 November 2016

SEJARAH ENERGY SECURITY DUNIA




Yergin (2006) menyebutkan bahwa cikal bakal konsep energy security dimulai pada perang dunia pertama. Ketika itu, Angkatan Laut Kerajaan Inggris memutuskan untuk mengubah bahan bakar kapal perang mereka yang awalnya batubara (mesin uap) menjadi bahan bakar minyak bumi.

Pada masa itu muncul pertanyaan besar terhadap kebijakan tersebut. Mengapa Angkatan Laut Kerajaan Inggris yang awalnya menggunakan bahan bakar batubara yang bersumber dari wilayah Wales yang dinilai lebih aman harus berganti ke bahan bakar minyak yang sumbernya terletak di daerah timur tengah yang tidak cukup meyakinkan keamanan dan keberlanjutan pasokannya.

Churcill yang saat itu menjabat sebagai Laksamana Angkatan Laut Kerajaan Inggris menjawab kritik-kritik tersebut. Dia mengatakan bahwa keamanan dan kepastian pasokan minyak terletak pada seberapa bervariasinya sumber pasokan minyak yang digunakan. Semakin bervariasi sumber pasokan minyak bumi yang digunakan, maka akan semakin aman dan handal kapal perang angkatan laut kerajaan Inggris.

Pada awal abad 20, terjadi peperangan-peperangan besar yakni perang dunia ke-1 dan perang dunia ke-2. Salah satu motif peperangan dan ekspansi wilayah kekuasaan pada masa ini adalah dalam rangka penguasaan sumber-sumber minyak bumi. Hal ini dapat dipahami karena bahan bakar berbasis minyak bumi merupakan elemen penting penggerak peralatan perang.

Kita dapat melihat beberapa peperangan yang memperebutkan sumber minyak seperti di Indonesia, Timur Tengah, Kaukasus dan Rumania selama perang dunia ke-2. Deklarasi perang Jepang terhadap Amerika Serikat melalui penyerangan terhadap pangkalan militer Amerika di Pearl Harbour juga dilatar belakangi upaya pengamanan Jepang terhadap suplai minyak ke negerinya. Peristiwa-peristiwa tersebut menunjukkan pentingnya suplai minyak bagi kegiatan militer selama perang dunia ke-2.

Pasca perang dunia ke-2, peranan minyak bumi justru semakin penting di tengah-tengah masyarakat dunia. Pada awalnya BBM jenis kerosin (minyak tanah) merupakan sumber energi populer terutama untuk digunakan sebagai bahan penerangan/lampu. Setelah itu, mesin bensin ditemukan, sehingga BBM jenis bensin semakin populer. Peranan bensin semakin besar di sektor transportasi dan industri. Pemanfaatan listrik untuk penerangan juga semakin populer.

Sistem tenaga uap yang memanfaatkan batubara mulai tergantikan dengan sistem tenaga minyak bumi. Mesin penggerak berbahan bakar bensin dan minyak diesel semakin populer dimana semakin masifnya perkembangan sektor transportasi yang menggunakan bahan bakar minyak bumi (BBM).

Kebutuhan akan bahan bakar minyak bumi semakin meningkat. Permintaan terus meningkat terutama untuk perkapalan, indutri, dan pemakaian pribadi. Hasil olahan minyak lainnya juga dimanfaatkan secara masif, seperti pelumas, parafin dan lilin.

Negara-negara terus menggenjot kegiatan perekonomiannya dan seiring dengan itu permintaan dan kebutuhan akan energi semakin meningkat pula. Baik untuk sektor transportasi, industri makanan dan minuman, kesehatan, manufaktur, pembangkit tenaga listrik dan pemanas ruangan. Pada waktu bersamaan, banyak negara industri yang tidak mampu memproduksi minyak bumi yang cukup untuk memenuhi kebutuhan mereka. Pada akhirnya kebijakan untuk mengimpor minyak dari negara-negara penghasil minyak dilakukan.

Negara-negara penghasil minyak mendapatkan pendapatan yang semakin besar dari semakin meningkatnya kebutuhan akan energi yang berbasiskan bahan bakar minyak. Pada tahun 1960 dibentuklah Organization of the Petreloum Exporting Countries (OPEC) yang anggotanya terdiri dari negara-negara pengekspor minyak terbesar. Kegiatan impor dan ekspor minyak kemudian semakin intens seiring dengan pertumbuhan ekonomi suatu negara. Semakin lama, negara-negara penghasil minyak tersebut semakin tergantung pada pendapatan yang didapatkan dari penjualan minyak. Sementara itu, negara-negara konsumen minyak semakin tergantung terhadap pasokan minyak dari negara-negara OPEC yang secara geografis cukup terpusat di wilayah Timur Tengah.

Sistem ini terus berlanjut hingga pada tahun 1973 dimana terjadi pergolakan geopolitik dunia. Negara-negara Timur Tengah penghasil minyak yang tergabung dalam OPEC menghentikan suplai minyak ke Amerika Serikat dan juga kepada sejumlah negara lain. Hal ini sebagai bentuk protes terhadap Amerika Serikat dan sekutunya yang mendukung agresi Israel di Timur Tengah. Hasilnya, harga minyak dunia saat itu menjadi naik empat kali lipat yang memicu krisis ekonomi global dan menunjukkan betapa lemahnya tatanan sistem suplai minyak global.

Konsekuensi dari peristiwa ini adalah penempatan energy security, khususnya keamanan pasokan minyak, sebagai bagian penting dari kebijakan energi pada banyak negara industri. (LaCasse and Plourde, 1995). Yergin (2006) menyebutkan bahwa krisis minyak pada tahun 1970-an telah melahirkan konsep modern mengenai energy security.

Seiring berjalannya waktu, dewasa ini, fokus energy security telah berkembang lebih jauh lagi. Cakupannya bukan hanya minyak bumi, tetapi juga gas alam, batubara, nuklir, energi terbarukan, dan listrik. Batubara masih mendominasi sebagai bahan bakar pembangkit listrik dunia. Peranan energi fosil (batubara, minyak bumi, dan gas alam) dinilai masih cukup signifikan secara global dibandingkan energi non fosil. Karenannya fokus energy security masih belum beranjak pada energi fosil, terutama minyak bumi.

Bentuk ancaman terhadap keberlangsungan sistem energi juga semakin luas. Bukan hanya mempertimbangkan isu-isu keamanan pasokan, tetapi juga mencakup perlindungan infrastruktur dari bencana alam, serangan terorisme dan konflik, dan juga kemungkinan serangan cyber. Dampak bencana badai Katrina dan Rita pada suplai minyak dan gas bumi di Teluk Meksiko tahun 2005 serta tragedi Fukushima di Jepang tahun 2011 merupakan contoh bentuk ancaman serius faktor alam terhadap energy security.

Namun demikian, bencana alam di Teluk Meksiko berhasil menunjukkan betapa bermanfaatnya sistem stok energi (minyak bumi) darurat yang dibentuk negara-negara anggota International Energy Agency (IEA) dalam menanggulangi gangguan suplai energi di Teluk Meksiko. Pelepasan stok energi darurat ini adalah yang kedua kalinya dilakukan dalam otorisasi IEA. Pelepasan stok darurat ini terbukti mampu menjamin kestabilan ekonomi secara global pada saat terjadi gangguan pasokan di suatu wilayah.

Melambungnya kembali harga minyak pada 2007 – 2008 sekali lagi semakin meningkatkan kesadaran akan pentingnya kebijakan energy security. Sebaliknya penurunan signifikan dan drastis harga minyak pada tahun 2014 menimbulkan permasalahan di sisi yang lain, yakni berkurangnya minat investasi di sisi produksi dimana hal ini berarti berkurangnya pendapatan produser minyak termasuk juga berdampak terhadap lesunya aktivitas industri-industri pendukung dan juga industri-industri energi alternatif.

Bagi negara-negara konsumen minyak, turunnya harga minyak berarti keuntungan, karena dapat memperoleh minyak dengan harga rendah. Namun harga minyak yang terlalu rendah juga membuat konsumen semakin konsumtif terhadap minyak, dan di sisi lain, investasi di bidang energi terbarukan menjadi semakin tidak layak dan tidak menarik. Cita-cita masyarakat dunia untuk bergerak ke energi non fosil yang ramah lingkungan dan mencegah pemanasan global akan semakin jauh.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Rabu, 09 November 2016

DEFINISI ENERGI SECURITY




Organization of Petroleum Exporting Countries (OPEC) mendefinisikan energy security sebagaimana disampaikan oleh Sekretaris Umum OPEC, HE Abdallah Salem El-Badri, pada acara Chattam House Cenference, di London tahun 2008, yang berjudul “Middle East Energy 2008 - Risk and Responsibility: The New Realities of Energy Supply.” Beliau menyatakan bahwa energy security harus bersifat timbal balik. Energy security merupakan jalan dua arah. Keamanan permintaan merupakan hal yang penting bagi produsen energi sebagaimana keamanan pasokan bagi konsumen energi. Energy security seharusnya memiliki sifat-sifat sebagai berikut:
  1. Bersifat universal, diterapkan bagi negara kaya atau miskin secara setara, dengan fokus pada tiga pilar pengembangan berkelanjutan dan secara khusus menyangkut pemberantasan kemiskinan.
  2. Fokus pada penyediaan pelayanan energi modern bagi semua konsumen.
  3. Diaplikasikan pada seluruh rantai pasokan (supply chain). Sisi downstream sangat krusial seperti halnya upstream.
  4. Meliputi seluruh horizon waktu yang dapat diduga. Keamanan besok (masa depan) sangat penting selayaknya keamanan hari ini.
  5. Memperkenankan pengembangan dan penyebaran teknologi-teknologi baru melalui upaya berkelanjutan, berwawasan ekonomi dan lingkungan.
  6. Harus dapat memberikan manfaat dari peningkatan dialog dan kerjasama di antara para pemangku kepentingan.

The International Energy Agency (IEA) mendefinisikan energy security sebagai: Ketersediaan energi secara fisik secara terus menerus pada harga yang sanggup dicapai, serta memberikan perhatian terhadap aspek lingkungan. (www.iea.org)
IEA menyebutkan bahwa resiko-resiko energy security dapat dikategorikan sebagai berikut:
  1. Ketidakstabilan pasar energi yang disebabkan perubahan yang tak terduga dalam geopolitik atau faktor eksternal lainnya, atau sumber bahan bakar fosil yang terkonsentrasi.
  2. Kegagalan teknis seperti pemadaman listrik yang disebabkan gangguan pada jaringan dan pembangkit listrik.
  3. Gangguan keamanan fisik seperti terorisme, sabotase, pencurian dan pembajakan, serta bencana alam seperti gempa, badai, letusan gunung berapi, dampak perubahan iklim, dan lain-lain.
IEA menyebutkan terdapat faktor-faktor yang dapat berperan sebagai ancaman terhadap energy security, yaitu:
  1. Gangguan terhadap energy system yang disebabkan oleh kondisi cuaca ekstrem atau kecelakaan.
  2. Penyeimbangan jangka pendek (short-term) terhadap suplai dan permintaan di sektor kelistrikan.
  3. Kegagalan kebijakan.
  4. Konsentrasi sumber suplai energi fosil.
Energy system terdiri dari:
  1. Fuel Supply (pasokan/suplai bahan bakar).
  2. Energy transformation (transformasi energi).
  3. Energy Consumer (konsumen energi).
Selain itu, IEA membagi energy security ke dalam dua kelompok dimensi:
  1. Long term energy security, yaitu energy security yang berhubungan dengan investasi dalam jangka waktu tertentu untuk menyuplai energi yang sejalan dengan pertumbuhan ekonomi dan ketahanan lingkungan.
  2. Short term energy security, fokus pada kemampuan sistem energi dalam bereaksi secara cepat terhadap perubahan tiba-tiba pada keseimbangan supply-demand (pasokan-permintaan) energi.
Dengan demikian, keamanan pasokan energi merupakan perhatian utama IEA, dan hal ini selaras juga dengan yang didefinisikan European Union (EU) tetapi dengan beberapa perhatian tambahan terhadap isu lingkungan dan ketahanan. (Xavier Labandeira and Baltasar Manzano, 2012).

World Economic Forum (WEF) mendefinisikan energy security sebagai payung yang melindungi berbagai macam elemen-elemen yang berhubungan dengan energi, pertumbuhan ekonomi, dan kekuatan politik.

Sudut pandang terhadap energy security akan bervariasi tergantung posisi seseorang atau organisasi dalam rantai nilai energi (energy value chain). Konsumen dan industri pengguna energi menginginkan kesesuaian antara harga energi dengan permintaan, serta mengkhawatirkan gangguan terhadap suplai energi. Negara-negara penghasil minyak memandang energy security dari sisi keamanan pendapatan (revenue) dan keamanan permintaan pasar akan minyak sebagai bagian integral dalam setiap diskusi tentang energy security. Perusahaan minyak dan gas memandang akses kepada cadangan minyak dan gas, kemampuan untuk mengembangkan infrastruktur baru, dan kestabilan iklim investasi sebagai faktor-faktor yang sangat penting untuk menjamin energy security.

Negara-negara berkembang menempatkan perhatian mereka terhadap kemampuan masyarakat untuk membayar sumber daya energi pada harga yang terjangkau agar mampu menggerakkan roda perekonomian dan mengkhawatirkan keseimbangan goncangan pembayaran. Perusahaan-perusahaan pembangkit dan penyuplai listrik menempatkan perhatian kepada integritas seluruh jaringan listrik. Para pembuat kebijakan fokus kepada resiko gangguan suplai dan keamanan infrastruktur terhadap ancaman terorisme, perang, atau bencana alam. Mereka juga mempertimbangkan volume margin keamanan (jumlah kelebihan kapasitas, cadangan strategik, dan infrastruktur cadangan).

Di dalam rantai nilai energi (energy value chain), keanekaragaman harga dan suplai energi merupakan komponen yang sangat penting dalam energy security. Pada masa sebelumnya, minyak digunakan sebagai senjata sehingga kemudian timbullah perhatian bahwa gas alam dapat juga digunakan sebagai alat politik pada suatu waktu nanti. Dan ini terbukti dalam krisis Rusia dan Ukraina yang telah dipersepsikan secara umum sebagai konflik kepentingan terhadap gas alam.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Selasa, 08 November 2016

BAHAN BAKAR GAS UNTUK TRANSPORTASI (LPG/Vi-Gas)


Bahan bakar jenis LPG (Liquid Petroleum Gas) juga dapat dikategorikan sebagai bahan bakar gas, namun LPG merupakan jenis gas yang berbeda dengan gas alam. Jenis gas utama penyusun LPG adalah propana (CH3) dan butana (CH4) yang biasanya merupakan hasil sampingan kilang minyak atau sisa fraksinasi gas alam. Propana dan butana, biasanya keduanya dicampur dalam komposisi tertentu.

Selain dikenal sebagai bahan bakar untuk konsumsi rumah tangga, LPG dapat digunakan juga sebagai bahan bakar pada kendaraan. Nilai oktan LPG untuk kendaraan diatur lebih tinggi dibandingkan LPG untuk rumah tangga. Di Indonesia bahan bakar LPG yang digunakan untuk transportasi dikenal dengan merek Vi-Gas. Secara global penamanaanya juga bermacam-macam sesuai dengan penamaan di masing-masing Negara. Bahan bakar LPG untuk kendaraan dikenal juga sebagai AutoGas, Automotive LP Gas, GLP (Gas Liquid Petroleum), GPL (Gas Petroleum Liquid), atau LGV (Liquid Gas for Vehicle).

LPG yang digunakan pada kendaraan ini berbentuk cair. Tekanan LPG diatur pada tekanan sekitar 8-14 bar dan temperatur sekitar -40 oC. Karena LPG untuk kendaraan diatur dalam bentuk cair maka daya tampung gasnya lebih besar dibandingkan CNG pada volume tabung yang sama.

Sistem pendistribusian LPG untuk kendaraan mirip dengan sistem pendistribusian BBM. LPG yang diproduksi dari kilang minyak atau sisa fraksinasi gas alam, disimpan di terminal penyimpanan LPG. LPG yang berbentuk cair ini dikirimkan ke SPBU dengan menggunakan truk tangki LPG. Di SPBU, LPG yang diangkut truk ditransferkan ke tangki LPG di SPBU. Kendaraan berbahan bakar LPG dapat mengisi LPG di SPBU-SPBU yang memiliki pelayanan Vigas.

Kendaraan Berbahan Bakar LPG

Menurut WLPGA, jumlah kendaraan berbahan bakar LPG secara global telah mencapai angka 24.991.465 unit pada tahun 2013. Sedangkan total konsumsi LPG untuk kendaraan secara global mencapai 25,8 juta ton. (www.auto-gas.net). Sistem mesin pembakaran dalam (internal combustion engine) yang bekerja dengan bahan bakar liquid petroleum gas (LPG) merupakan teknologi yang telah terbukti bekerja dengan baik layaknya mesin spark ignition pada kendaraan berbahan bakar bensin. LPG sebagai bahan bakar kendaraan tidak digunakan sendiri (single fuel) tetapi selalu berada dalam sistem bi-fuel. Kendaraan berbahan bakar bensin dapat ditambah sistem converter kit agar dapat menjadi kendaraan bi-fuel. Pada sistem ini, LPG dikombinasikan dengan bensin yang bekerja secara bergantian (sequential). Pada kendaraan bi-fuel terdapat dua sistem bahan bakar yang berarti terdapat dua tangki bahan bakar yang terpisah. Satu untuk bensin dan satu untuk LPG. Sistem bi-fuel memungkinkan LPG dan bensin dapat digunakan secara bergantian melalui switching cepat baik secara manual maupun otomatis. (IEA ETSAP, 2010).

Penggunaan LPG pada kendaraan dapat mengurangi emisi gas rumah kaca (green house gas – GHG) hingga 15% dibandingkan pada penggunaan bahan bakar petrol. Biaya konversi kendaraan bensin menjadi kendaraan bi-fuel LPG berkisar antara EUR € 1130 (15 juta-an rupiah) hingga EUR € 2740 (40 juta-an rupiah). (IEA ETSAP, 2010).


Grafik 3. Perkembangan jumlah kendaraan berbahan bakar LPG secara global dari tahun 2008 hingga 2013
Sumber : www.auto-gas.net

Grafik 4. Perkembangan konsumsi LPG untuk kendaraan berbahan bakar LPG secara global dari tahun 2008 hingga 2013
Sumber : www.auto-gas.net

Stasiun pengisain LPG untuk kendaraan (ViGas) di seluruh Indonesia terdapat sebanyak sekitar 21 unit SPBU yang melayani pengisian LPG (LGV filling station) per Juli 2015. Kebutuhan pasokan LPG untuk kendaraan juga kemungkinan akan bertambah seiring dengan pembagian 50.000 konverter kit LPG untuk perahu nelayan di beberapa wilayah pada tahun 2015.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Senin, 07 November 2016

Teori Asal Usul Minyak Bumi



Terdapat perdebatan tentang teori asal usul minyak bumi. Secara umum teori-teori tersebut diklasifikasikan ke dalam dua kelompok:
  1. Teori pertama menyatakan bahwa minyak bumi berasal dari jasad renik lautan, tumbuhan dan hewan yang mati sekitar 150 juta tahun yang lalu. Sisa-sisa organisme tersebut mengendap di dasar lautan, kemudian ditutupi oleh lumpur. Lapisan lumpur tersebut lambat laun berubah menjadi batuan karena pengaruh tekanan lapisan di atasnya. Sementara itu, dengan meningkatnya tekanan dan temperatur, bakteri anaerob menguraikan sisa-sisa jasad renik tersebut dan mengubahnya menjadi minyak dan gas. Proses pembentukan minyak bumi dan gas ini memakan waktu jutaan tahun. Minyak dan gas yang terbentuk meresap dalam batuan yang berpori seperti air dalam batu karang. Minyak dan gas dapat juga bermigrasi dari suatu daerah ke daerah lain, kemudian terkosentrasi jika terhalang oleh lapisan yang kedap.
  2. Teori kedua yang cukup berkembang di antara para ilmuwan mengenai asal usul terjadinya minyak bumi adalah Teori Anorganik (Abiogenesis). Barthelot (1866) mengemukakan bahwa di dalam minyak bumi terdapat logam alkali. Pada saat logam ini berada dalam kondisi bebas dan temperatur tinggi dan kemudian bersentuhan dengan CO2 maka terbentuklah asitilena. Mandeleyev (1877) mengemukakan bahwa minyak bumi terbentuk akibat adanya pengaruh kerja uap pada karbida-karbida logam dalam bumi. Yang lebih ekstrim lagi adalah pernyataan beberapa ahli yang menyatakan bahwa minyak bumi mulai terbentuk sejak zaman prasejarah, bersamaan dengan proses terbentuknya bumi. Pernyataan tersebut berdasarkan fakta ditemukannya material hidrokarbon dalam beberapa batuan meteor dan di atmosfir beberapa planet lain.

Terlepas dari perdebatan tentang teori asal usul minyak bumi, manusia tetaplah membutuhkan usaha-usaha untuk dapat memanfaatkannya yang meliputi pengeboran, pengangkatan minyak dan pengolahan (refinery). Minyak bumi biasanya diangkat ke permukaan Bumi dalam bentuk emulsi minyak-air. Selanjutnya digunakan senyawa kimia khusus yang disebut demulsifier untuk memisahkan air dan minyak. Dari suatu proses eksplorasi pada sumur minyak bumi, maka sebagian besar akan dihasilkan minyak mentah (crude oil), dan terkadang ditemukan juga kandungan gas alam di dalamnya yang disebut gas alam bawaan (associated gas).




Minggu, 06 November 2016

HUBUNGAN ENERGY SECURITY DENGAN HUBUNGAN INTERNASIONAL


Seperti diketahui, semenjak terjadinya krisis minyak global pada awal tahun 1970-an, kesadaran masyarakat internasional mengenai energy security semakin meningkat. Akhir-akhir ini, semakin terjadi ketidakseimbangan distribusi geografis antara negara-negara sumber energi dengan negara-negara konsumen energi. Permasalahan tersebut diperparah dengan semakin berkurangnya pasokan minyak pada negara-negara yang tergantung pada minyak. (Choucri, N., 1977). Semenjak itulah, energy security semakin diintegrasikan ke dalam debat-debat teori hubungan internasional.

Energy security telah menjadi fokus bahan diskusi dalam keilmuan Hubungan Internasional berhubung terdapat beberapa isu energi seperti harga energi yang tinggi, peningkatan permintaan dan kompetisi terhadap sumber daya energi yang terkonsentrasi secara geografis, ketakutan akan kelangkaan sumber daya atau habisnya sumber daya dalam waktu dekat, serta perhatian terhadap isu-isu sosial dan efek politis dari perubahan iklim. (Vivoda, 2011).

Menurut Daniel Yergin (2006), konsep energy security meliputi dua dimensi. Dimensi pertama yaitu dimensi keindependenan suatu negara untuk memenuhi kebutuhan energinya yang berasal dari sumber daya energi domestik. Dimensi kedua yaitu dimensi interdependensi global dimana pemenuhan energi setiap negara tak lepas dari pasokan energi dunia yang berasal dari, khususnya, negara-negara pengekspor yang kaya akan sumber minyak dan gas. Melalui dua dimensi ini, nampak bahwa energy security tidak semata-mata merupakan isu domestik suatu negara tetapi meliputi isu global dimana ketiadaan pasokan energi dapat berimplikasi pada stabilitas internasional, baik itu bidang ekonomi dan perdagangan maupun politik dan sosial.

Mason Willrich dalam bukunya yang berjudul Energy and World Politics (1975), memandang keamanan energi sesuai dengan konteks dan aktor yang mengimplementasikannya, yaitu negara importir dan eksportir energi. Bagi negara pengekspor energi, keamanan energi dapat diartikan sebagai jaminan akan akses pasar serta keamanan permintaan. Oleh karena itu, untuk menjamin keamanan energinya, negara pengekspor dapat melakukan beberapa strategi. Langkah awal adalah dengan berusaha membuat negara importir energi menjadi sangat tergantung pada energi yang diproduksi oleh negara eksportir.

Sedangkan bagi negara importir, keamanan energi diartikan sebagai jaminan atas pasokan energi yang cukup sehingga memungkinkan berfungsinya perekonomian nasional melalui tindakan yang dapat diterima secara politik. Untuk menjamin keamanan energi, maka negara pengimpor dapat melakukan tiga strategi berdasarkan efek yang ditimbulkan.

Pertama untuk mengurangi kerugian yang dapat timbul apabila terjadi gangguan pasokan energi, negara dapat melakukan stand-by rationing plans dan stockpiling. Rationing plans merupakan penghematan konsumsi energi untuk mengatasi serta memperpanjang waktu operasional jika terjadi masalah suplai energi. Sedangkan stockpiling merupakan penumpukan cadangan (stok/penimbunan) energi yang dapat digunakan pada saat-saat darurat sehingga masalah-masalah jangka pendek mengenai ketersediaan energi dapat teratasi.
Kedua, untuk memperkuat jaminan suplai energi dari luar, negara dapat melakukan tindakan diversifikasi sumber suplai luar negeri dan meningkatkan interdependensi (ketergantungan) negara pengimpor terhadap negara pengekspor energi. Peningkatan interdependensi dapat dilakukan melalui dua cara yaitu investasi jangka panjang (long-term investment) dan melalui program bantuan pembangunan (development assistance). Dengan meningkatnya ketergantungan negara pengekspor kepada negara pengimpor maka negara eksportir tidak akan gegabah untuk menginterupsi suplainya ke negara importir karena negara pengekspor pada akhirnya juga memiliki ketergantungan pada negara pengimpor.

Ketiga, untuk mengurangi ketergantungan akan suplai asing, sebuah negara dapat meningkatkan suplai energi domestiknya atau melalui peningkatan self-sufficiency (swasembada energi). Akan tetapi menurut Willrich, cara ini hanya dapat dilakukan oleh negara yang memiliki sumberdaya energi yang cukup besar. Oleh karena itu, Willrich membagi definisi self-sufficiency menjadi tiga, yaitu: bergantung secara penuh pada sumber daya domestik, bergantung pada sumberdaya domestik secara tidak terbatas setelah melewati suatu masa transisi, dan bergantung secara esklusif pada sumber daya domestik dengan waktu yang terbatas.
Berdasarkan tiga tindakan spesifik yang dijabarkan oleh Willrich maka dapat disimpulkan bahwa tindakan pertama dan ketiga merupakan cara untuk mengatasi kerentanan yang berasal dari dalam negeri. Negara importir dapat menerapkan strategi domestik untuk menjaga keamanan energinya dengan cara melakukan rationing, stockpiling, serta dengan cara meningkatkan self sufficiency.
Sedangkan sebagai negara importir, tentunya impor energi dilakukan dari negara lain untuk memenuhi kebutuhan energi dalam negeri. Oleh karena itu, untuk mengatasi kerentanan dari luar negeri atau kerentanan suplai energi asing, negara importir dapat melakukan diversifikasi suplai dan meningkatkan interdependensi negara eksportir dengan cara memberikan bantuan pembangunan atau dengan cara investasi.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Sabtu, 05 November 2016

HIDROGEN SEBAGAI BAHAN BAKAR TRANSPORTASI


Gambar 1. Toyota Mirai yang dilaunching tahun 2015 mrupakan salah satu kendaraan berbahan bakar hidorgen fuel cell yang dijula secara komersial. Toyota Mirai didasarkan pada konsep kendaraan Toyota FCV.
Sumber : https://en.wikipedia.org/wiki/File:Toyota_FCV_reveal_25_June_2014_-_by_Bertel_Schmitt_02.jpg


Aplikasi hidrogen sebagai bahan bakar kendaraan merupakan fokus riset dan pengembangan fuel cell. Keuntungan yang dapat diberikan hidrogen sebagai bahan bakar kendaraan listrik adalah tidak adanya emisi yang dihasilkan, adanya kemungkinan produksi domestik, dan dapat memberikan efisiensi yang sangat tinggi. (www.eia.org). Bahan bakar hidrogen dapat diisikan ke Fuel Cell Electric Vehicle (FCEV) dalam waktu berkisar antara 3-5 menit. Jarak tempuh FCEV dapat mencapai 300 – 400 mil (480 - 640 km). (Joan Ogden dkk., 2014).

Hingga sejauh ini, pengembangan bahan bakar hidrogen untuk transportasi masih akan menghadapi banyak tantangan. Tantangan-tantangan tersebut meliputi isu teknis, biaya infrastruktur dan harga kendaraan yang sangat mahal, teknologi penyimpanan yang bertekanan sangat tinggi, dan keamanan. Walaupun demikian, kenyataannya telah terdapat stasiun pengisian bahan bakar hidrogen dan kendaraan berbahan bakar hidrogen yang telah berada pada tahapan komersial. Sejumlah stasiun pengisian bahan bakar hidrogen telah dibangun di Amerika Serikat dan juga Jepang. Sejumlah pabrikan kendaraan juga telah memperkenalkan kendaraan hidrogen misalkan Hyundai, Toyota, Honda, dan Mercedez-Benz.

Hal ini semua patut menjadi pertimbangan bagi Indonesia dalam menyusun strategi-strategi dan kebijakan-kebijakan yang ke depannya dapat mendukung pengembangan bahan bakar hidrogen untuk transportasi di dalam negeri. Penggunaan hidrogen sebagai bahan bakar transportasi merupakan solusi masa depan terhadap penggunaan kendaraan yang bebas emisi dan juga sangat efisien karena dapat menawarkan daya jangkau kendaraan yang lebih jauh. Pada skala komersial hidrogen akan menjadi suatu aplikasi yang umum dalam beberapa waktu ke depan.

Terdapat sejumlah cara untuk mengirimkan hidrogen ke stasiun pengisian sehingga dapat mengisi kendaraan. Hidrogen dapat diproduksi secara lokal di pabrik besar, disimpan sebagai gas bertekanan atau sebagai gas cair cryogenic (pada Temperatur -253 oC), dan didistribusikan menggunakan truk atau pipa gas. Hidrogen juga dapat diproduksi di lokasi stasiun pengisian (bahkan di rumah dan fasilitas komersial) dengan menggunakan bahan baku gas alam, alkohol (methanol atau ethanol), atau listrik. Saat ini, teknologi pendistribusian hidrogen telah menjadi teknologi yang umum di bisnis perniagaan hidrogen dan industri kimia. Sebagian besar hidrogen industri diproduksi dan digunakan di lokasi, namun beberapa di antaranya diantarkan ke pengguna yang jaraknya relatif jauh dengan menggunakan pipa atau truk. (Joan Ogden dkk., 2014).

Di Amerika Serikat terdapat sekitar 500 buah mobil berbahan bakar fuel cell yang beroperasi. Sebagain besar dari kendaraan tersebut berupa bus dan mobil bermesin motor elektrik yang berbahan bakar fuel cell. Sedikit di antaranya yang memiliki sistem pembakaran hidrogen secara langsung. Kendala perkembangan jumlah kendaraan fuel cell adalah harganya yang sangat mahal dan masih langkanya fasilitas pengisian. (www.eia.org).

Di Amerika Serikat terdapat sekitar 50 stasiun pengisian bahan bakar hidrogen. Namun hanya sekitar seperlimanya yang tersedia untuk konsumen umum, dan 40% di antaranya terletak di wilayah California. Jumlah kendaraan berbahan bakar hidrogen masih terbatas. Ada kecenderungan masyarakat enggan membeli mobil hidrogen dengan alasan jumlah stasiun pengisian hidrogen belum banyak. Di sisi lain, perusahaan-perusahaan juga enggan berinvestasi untuk membangun stasiun pengisian bahan bakar hidrogen selama populasi mobil hidrogen yang beroperasi belum banyak. Hal ini menimbulkan permasalahan “ayam dan telur”, sehingga tidak ada di antara kedua pihak, baik di sisi permintaan (demand) dan pasokan (supply), yang berinisiatif untuk memulai lebih dulu. (www.eia.org).

Pada bulan Mei 2014, California Energy Commission mengalokasikan dana sebesar 46,6 juta dolar untuk membantu pengembangan 28 stasiun pengisian bahan bakar hidrogen untuk umum di California. Hal ini dilakukan untuk mempromosikan kendaraan fuel cell yang bebas emisi dan ramah lingkungan kepada masyarakat. (www.eia.org).

Di California, Amerika Serikat, terdapat kebijakan mengenai mandat emisi nol (zero emission mandate), dimana hal ini ditujukan agar pabrikan kendaraan segera memperkenalkan Fuel Cell Electric Vehicles (FCEVs) ke pasar. California Fuel Cell Partnership memproyeksikan FCEVs akan terus berkembang pesat, dari yang saat ini beroperasi sekitar 100 unit menjadi 6.500 unit pada 2017 dan 18.000 unit pada 2020. Hingga sejauh ini pabrikan yang telah resmi mengeluarkan FCEV adalah Hyundai dengan merek Tucson berjenis sport utility vehicle (SUV). Honda, Toyota, dan Mecedes-Benz berencana mengikuti untuk memasarkan FCEV light duty (kerja ringan) pada 2016. (AGA, 2014).

Perkiraan komponen biaya untuk bahan baku hidrogen saat ini adalah sekitar USD $ 4 – USD $ 12 untuk memproduksi bahan bakar hidrogen yang setara dengan satu galon bensin. Semakin murahnya biaya bahan baku dan peningkatan teknologi pemprosesan dan penyimpanan dari waktu ke waktu memungkinkan hidrogen menjadi bahan bakar dengan margin keuntungan yang tinggi. Di Amerika Serikat, dispenser hidrogen diatur agar satuan pembelian bahan bakar hidrogen disertifikasi dalam satuan kilogram (Kg), dimana pada tiap 1 Kg Hidrogen ini memiliki kemiripan kesetaraan energi dengan satu galon bensin. Hal ini dilakukan agar konsumen dapat melakukan perbandingan keekonomian langsung antara bahan bakar hidrogen dan bensin. (AGA, 2014).

Secara paralel, terdapat juga komitmen penganggaran dana hingga USD $ 20 juta setiap tahun untuk pembangunan setidaknya 100 stasiun pengisian bahan bakar hidrogen (hydrogen fuel cell station). California Environmental Protection Agency and Air Board menargetkan 51 hydrogen fuell cell station akan beroperasi pada 2016. (AGA, 2014).

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Jumat, 04 November 2016

KEPEMIMPINAN LEVEL 5


Di dalam buku Good to Great karya Jim Collins disebutkan bahwa salah satu faktor penting yang dapat merubah suatu perusahaan yang bagus menjadi perusahaan yang hebat adalah adanya Kepemimpinan Level 5. 

Jim collins meyakini bahwa temuannya mengenai kepemimpinan level 5 ini merupakan temuan empiris bukan temuan ideologis. Dari sebanyak 1.435 perusahaan yang muncul di Fortune 500, Jim Collins dan timnya menyeleksi perusahaan-perusahaan tersebut sehingga tersisa hanya 11 perusahaan. Perusahaan-perusahaan ini memiliki kesamaan yaitu mampu membuat lompatan kemajuan yang signifikan dari yang awalnya baik menjadi hebat dan mempertahankan kondisi ini selama setidaknya 15 tahun. Kesebelas perusahaan tersebut memiliki kepemimpinan level 5 di posisi-posisi kunci perusahaan termasuk CEO selama periode transisi penting. 

Yang dimaksud Level 5 adalah hierarki lima tingkat kepemimpinan eksekutif. Level 5 merupakan kualitas kepemimpinan tertinggi. Secara sederhana karakteristik kepemimpinan level 5 adalah campuran paradoksal antara kerendahan hati dan tekad profesional. Para pemimpin yang tergolong pemimpin level 5 memiliki sifat ambisius layaknya sifat pemimpin secara umum, namun ambisi mereka ini pertama-tama ditujukan untuk perusahaan, bukan diri sendiri.

Pemimpin level 5 memiliki sifat rendah hati yang memikat, tidak menonjolkan diri dan biasa-biasa saja. 

Pemimpin Level 5 juga memiliki sikap yang membuka jalan bagi penerusnya untuk meraih kesuksesan yang lebih besar lagi di generasi-generasi berikutnya. 

Hal ini berkebalikan dengan pemimpin level 4 yang cenderung bersifat egosentris. Pemimpin level 4 sama sekali tidak memperhatikan penyiapan penerus mereka sehingga selepas masa kepemimpinan mereka, perusahaan cenderung menuju kegagalan. Mereka cenderung berupaya membangun keagungan diri sendiri dan tidak menyisakannya untuk generasi berikutnya. Pemimpin level 4 cenderung bersikap seperti selebritis, senang menerima pujian atas kesuksesan yang dicapai perusahaan, dan selalu melihat keluar dari diri mereka untuk menyalahkan faktor lain atas hasil yang mengecewakan.

Pemimpin level 5 memiliki semangat dan tekad kuat untuk memberikan hasil yang lestari bagi perusahaan. Mereka akan melakukan apapun yang diperlukan agar bisa membuat pencapaian perusahaan menjadi luar biasa, tak perduli betapa besar atau sulit keputusan yang harus diambil.

Pemimpin level 5 juga menunjukkan ketekunan ala pekerja lapangan, dan tidak banyak pamer aksi. 

Ketika perusahaan mencapai kesuksesannya maka para pemimpin level 5 menisbatkan kesuksesan tersebut kepada selain diri mereka, misal kepada tim atau kepada keberuntungan dan nasib baik. Namun ketika kondisi perusahaan menjadi buruk maka mereka bercermin pada diri sendiri dan lalu menyalahkan diri sendiri dan mengambil tanggung jawab penuh atas kegagalan tersebut. 

Salah satu tren paling merusak dalam sejarah masa kini adalah adanya kecenderungan untuk memilih pemimpin selebritis yang mempesona dan menyingkirkan pemimpin level 5 potensial.

Jim Collins meyakini bahwa ada dua kategori manusia. Kategori pertama adalah orang-orang yang sampai kapanpun tidak akan mampu menundukkan sikap egoistis mereka di bawah kepentingan yang lebih besar. Artinya kelompom ini tidak akan mampu menjadi pemimpin level 5. Kategori kedua adalah orang-orang yang memiliki potensi berevolusi ke Level 5. 

Dengan mengetahui karakteristik kepemimpinan level 5 ini, diharapkan kita bisa mengembangkan diri kita menjadi pemimpin level 5. Hal ini patut dicoba. Selanjutnya, untuk bisa membuat sebuah perusahaan bagus menjadi hebat, terdapat beberapa hal lanjutan yang perlu dilakukan oleh pemimpin level 5 yakni : siapa dulu baru apa, menghadapi fakta keras, konsep landak, kultur disiplin, akselerator teknologi. 

Hal-hal lanjutan ini akan kita bahas di artikel-artikel berikutnya. 


Kamis, 03 November 2016

BAHAN BAKAR GAS UNTUK TRANSPORTASI (CNG & LNG)

Dalam terminologi ini, yang dimaksud bahan bakar gas untuk kendaraan adalah bahan bakar yang berupa gas alam (natural gas) dan juga gas sampingan pengolahan minyak/petroleum atau disebut sebagai LPG (Liquid Petroleum Gas). Namun di antara keduanya terdapat perbedaan dari sisi komposisi pembentuk gasnya. Kandungan utama gas alam adalah gas metana atau methane (CH4). Sedangkan Jenis gas utama penyusun LPG adalah propana (CH3) dan butana (CH4) yang biasanya merupakan hasil sampingan kilang minyak atau sisa fraksinasi gas alam.

CNG dan LNG

Terdapat dua pilihan teknologi yang tersedia yang berhubungan dengan cara penyimpanan dan pendistribusian gas alam (natural gas) dan juga untuk aplikasi sebagai bahan bakar kendaraan.
  1. Teknologi pertama, gas dikompresi hingga mencapai tekanan kurang lebih 200 bar dan diisikan kepada tabung-tabung pada kendaraan yang mampu mengakomodir tekanan gas yang tinggi. Teknologi ini disebut Compressed Natural Gas atau dikenal sebagai CNG.
  2. Teknologi kedua, gas alam dicairkan pada temperatur cryogenic atau dingin ekstrem (-160oC) kemudian diisikan ke tabung/tangki cryogenic yang ada pada kendaraan. Teknologi ini disebut sebagai liquefied natural gas (LNG).

LNG diproduksi di pabrik LNG (LNG plant). Dalam proses pencairan gas alam menjadi LNG, dibutuhkan proses pengurangan kandungan gas-gas pengotor pada gas alam agar gas alam dapat dicairkan dengan aman dan lancar. Sedangkan CNG diproduksi di CNG plant. Gas pipa dialirkan ke kompresor untuk ditekan hingga mencapai tekanan tertentu dan kemudian gas disimpan di tabung bertekanan tinggi. CNG juga dapat diproduksi dari gas alam yang berasal dari regasifikasi LNG. Pembangunan stasiun pengisian LNG untuk kendaraan akan relatif jauh lebih mahal dibandingkan biaya pembangunan stasiun pengisian CNG (CNG station/SPBG). Selain proses pencairan yang mahal, proses penyimpanan LNG di stasiun pengisian juga mahal karena membutuhkan tangki cryogenic, tangki khusus yang dapat menahan temperatur LNG yang -165oC.

Rantai pasokan (supply chain) stasiun pengisian LNG dan CNG pada dasarnya hampir sama. Sistem pendistribusian CNG memiliki beberapa pilihan metode. Ini dapat dilihat dari jenis CNG station atau SPBG. Bisa berupa CNG online station, mother and daughter station, mobile refueling unit, dan ecostation.
  1. CNG online station. Pada CNG jenis pertama ini gas alam disalurkan melalui pipa menuju SPBG. Di SPBG gas dikompresi hingga tekanan mencapai 200 – 250 bar dan kemudian diisikan ke kendaraan pengguna CNG melalui dispenser CNG.
  2. Mother and daughter station. Sistem SPBG jenis kedua terdiri dari Mother Station dan Daughter Station. Mother station sama seperti SPBG jenis pertama (online station). Gas alam dialirkan melalui pipa ke mother station dan di dilakukan pengkompresian gas menjadi CNG. CNG yang diproduksi oleh mother station kemudian diisikan ke truk trailer / kontainer CNG yang kemudian truk tersebut mengantarkan CNG ke daughter station. Truk kontainer CNG mentransfer CNG yang dimuatnya ke daugther station, lalu daughter station mengisikan CNG ke kendaraan pengguna akhir CNG.
  3. Mobile refueling unit (MRU). SPBG jenis ini dapat disebut juga SPBG yang dapat bergerak (portable). MRU bentuknya berupa kontainer yang di dalamnya berisi peralatan-peralatan pemprosesan dan pengisian CNG yang di antaranya terdiri dari dryer dan filter, kompresor, tabung CNG, dan dispenser. Kontainer CNG ini dapat ditarik oleh truk untuk diantarkan ke lokasi yang diinginkan yakni ke pengguna CNG secara langsung.
  4. Hybrid station, Co-Location atau Ecostation. Biasanya merupakan penyebutan bagi SPBG yang terintegrasi (dalam satu lokasi) dengan stasiun pengisian bahan bakar lain seperti SPBU bensin dan diesel. SPBG pada ecostation dapat berupa CNG online station, daughter station, atau MRU.

Sedangkan untuk sistem pengisian bahan bakar LNG akan dibutuhkan pasokan LNG dari kilang LNG (pabrik pencairan gas alam). LNG yang dihasilkan oleh kilang LNG dapat dikirimkan ke stasiun pengisian bahan bakar LNG (LNG refueling station) terdekat melalui pipa penyalur LNG untuk langsung melakukan pengisian pada kendaraan. LNG yang dihasilkan kilang LNG juga dapat dikirimkan ke LNG refueling station yang jaraknya cukup jauh dari kilang LNG, baik dengan menggunakan truk kontainer LNG, kapal kontainer LNG, kereta api kontainer LNG, atau paduan dari ketiga moda transportasi tersebut.

LNG refueling station juga dapat berperan sebagai LCNG station, yang merupakan perpaduan LNG refueling station dan CNG refueling station. LCNG station dapat melakukan pengisian LNG dan CNG. LNG yang disimpan pada LCNG station, diregasifikasi dengan menggunakan vaporizer dan kemudian diatur tekanannya sehingga memenuhi tekanan CNG, lalu melalui dispenser, CNG diisikan ke kendaraan CNG.

Kendaraan Berbahan Bakar CNG dan LNG

Teknologi penerapan BBG pada kendaraan, baik LNG dan CNG, secara umum adalah sama, yang membedakan adalah cara penyimpanan gas pada kendaraan. Kendaraan yang menggunakan bahan bakar CNG, akan menggunakan tabung bertekanan tinggi untuk menyimpan CNG. Pada kendaraan yang menggunakan LNG akan menggunakan tanki cryogenic untuk menyimpan LNG yang memiliki temperatur dingin ekstrem.

Penerapan BBG pada kendaraan memiliki beberapa pilihan teknologi, dapat berupa sistem bi-fuel, dual fuel atau melalui modifikasi mesin. Untuk mesin berbahan bakar bensin umumnya teknologi yang dipakai adalah sistem bi-fuel. Perangkat converter kit bi-fuel dipasang pada kendaraan. Dengan adanya sistem bi-fuel pada kendaraan, bensin dan gas dapat digunakan secara bergantian (sequential) yang dapat saling dipertukarkan penggunaannya dengan cepat melalui proses switching, baik secara manual maupun secara otomatis.

Untuk kendaraan bermesin diesel, aplikasi BBG dapat dilakukan dengan dua cara yaitu dengan mengkonversi sistem bahan bakar menjadi sistem dual fuel atau dengan cara modifikasi mesin diesel menjadi mesin yang menggunakan bahan bakar gas secara penuh (100%). Pada sistem dual fuel, dilakukan pemasangan converter kit gas sehingga minyak diesel dan gas dapat digunakan secara bersama (dicampur) di ruang bakar. Sedangkan pada teknologi modifikasi mesin, mesin diesel dibongkar dan dimodifkasi agar dapat menggunakan bahan bakar gas secara penuh sehingga tidak dapat lagi menggunakan bahan bakar minyak diesel.

Pada teknologi CNG, gas disimpan di tabung silinder bertekanan sekitar 200 bar. Ketika CNG hendak digunakan dan dikrimkan ke mesin, maka tekanannya diturunkan sehinggga sesuai yang dibutuhkan oleh sistem mesin.

Pada teknologi LNG, gas dalam bentuk cair dengan temperatur sekitar -160oC disimpan di tanki cryogenic pada kendaraan, semacam termos yang dapat menjaga temperatur LNG agar tetap dingin selama mungkin dan tidak menguap. Ketika LNG hendak digunakan dan dialirkan ke ruang mesin, maka LNG dialirkan melalui vaporizer terlebih dahulu agar fasenya yang cair berubah menjadi gas dan kemudian diatur tekanannya agar sesuai dengan sistem mesin.

Berdasarkan pengalaman, biaya peralatan dan pemasangan converter kit kendaraan pribadi berbahan bakar bensin menjadi sistem bi-fuel CNG berkisar antara 15 – 25 juta rupiah. Sedangkan untuk konversi truk berbahan bakar diesel menjadi sistem dual fuel CNG berkisar antara 100 – 200 juta rupiah. Biaya untuk memodifikasi truk/bis bermesin diesel menjadi mesin pengguna BBG secara penuh, berdasarkan informasi, biayanya sekitar 200 juta rupiah.

Pada teknologi LNG, biaya peralatan dan pemasangan converter kit cenderung lebih mahal dibandingkan teknologi CNG karena harga tangki cryogenic yang sangat mahal. Biaya konversi 1 unit Bus menjadi berbahan bakar LNG system dual fuel mencapai hampir USD $ 30.000. Berdasarkan pengalaman lainnya, biaya konversi truk menjadi sistem dual fuel LNG mencapai 500 juta rupiah. Harga 1 unit truk berbahan bakar LNG (dedicated fuel) keluaran pabrik mencapai 1,3 Miliar Rupiah.

Secara global, bahan bakar LNG dan CNG telah banyak digunakan. NGV Global (dalam http://www.iangv.org/) menyebutkan bahwa pada tahun 2012 terdapat lebih dari 16,7 juta kendaraan berbahan bakar gas yang beroperasi di dunia. Angka ini termasuk kereta api, kapal laut, dan pesawat. Sedangkan menurut NGVA Europe, pada tahun 2013, jumlah NGV dunia (tidak termasuk kereta api, kapal laut, dan pesawat) yang beroperasi telah mencapai 17.730.733 unit. Sedangkan CNG Station, L-CNG Station, dan LNG station yang beroperasi mencapai 24.036 unit. Negara pengguna NGV terbesar adalah Iran (18,61% dari total jumlah NGV dunia), Pakistan (15,74%) dan Argentina (12,66%). Sedangkan negara-negara yang memiliki jumlah pangsa penggunaan NGV terbesar terhadap total kendaraan di negaranya adalah Pakistan (79,67% terhadap jumlah total kendaraan), Bangladesh (62,12%), dan Armenia (55,45%).

Grafik 1. Jumlah total kendaraan berbahan bakar gas (natural gas vehicle) secara global sejak tahun 1991 – 2012
Sumber : http://www.iangv.org/

CH-‐IV International (2009, dalam ECE, 2015) menyebutkan bahwa untuk transportasi LNG di darat dengan menggunakan truk tanker (bukan sebagai bahan bakar kendaraan) tercatat telah terjadi 23 insiden dan kecelakaan semenjak 1971 di Amerika Serikat dan Eropa. Enam insiden di antaranya melibatkan kecelakaan dengan kendaraan lain. Sepuluh insiden terjadi karena truk terguling dimana kebanyakan tanpa terjadi hilangnya muatan. Dari insiden-insiden ini hanya 2 insiden yang berujung pada kebakaran. Hanya satu insiden (dari dua) yang menyebabkan kematian pengemudi akibat kebakaran LNG.

Dari data-data di atas dapat dilihat bahwa penggunaan LNG dan CNG pada kendaraan merupakan aplikasi yang sudah cukup lama dilakukan, dan bukan suatu kegiatan baru. Teknologinya sudah mapan. Panduan-panduan dan standard-standard internasional telah banyak diterbitkan sebagai bahan acuan penggunaan CNG dan LNG yang efektif, efisien dan aman. Karenanya pemanfaatan CNG dan LNG sebagai bahan bakar altenatif minyak bensin dan solar merupakan solusi yang patut dipertimbangkan.

Segmentasi penggunaan LNG dan CNG pada jenis kendaraan tertentu juga telah banyak dikaji. Terdapat pula sejumlah best practice yang dapat diterapkan. Salah satunya adalah seperti yang disusun oleh tim West Port (2013).

Gambar 1. Segmentasi pengguna LNG dan CNG untuk transportasi
Sumber : West Port, 2013.

Gambar 2. Pertimbangan pemilihan bahan bakar CNG atau LNG pada kendaraan jarak menengah dan medium duty
Sumber : West Port, 2013.

Grafik 2. Rasio densitas bensin (gasoline), LNG dan CNG dibandingkan diesel (solar)
Sumber : US Energy Infromation Administration

Penggunaan LNG pada kendaraan dapat menawarkan daya tampung gas yang lebih besar dibandingkan CNG. Gas dalam bentuk cair dapat dimuat lebih banyak dibandingkan dalam bentuk gas pada volume tangki yang sama. Pada LNG, gas dapat dimampatkan hingga 600 kali sedangkan pada CNG hanya dapat dimampatkan sekitar 140 hingga 250 kali. Hal ini menyebabkan kendaraan yang menggunakan LNG akan dapat menempuh perjalanan yang lebih jauh dibandingkan CNG pada ukuran volume tabung penyimpanan bahan bakar gas yang sama.

Hingga sejauh ini upaya pembangunan SPBG (CNG Station dan LNG station) di banyak wilayah Indonesia terus dilakukan. Bahkan penggunaan bahan bakar LNG untuk kendaraan telah mulai diuji coba pada kendaran pertambangan di Kalimantan Timur. Menurut data dari Kementerian ESDM, pada tahun 2015 direncanakan akan dibangun 22 SPBG (CNG station) baru dimana nantinya total SPBG yang sudah dibangun di seluruh Indonesia akan mencapai 47 SPBG, sedangkan yang beroperasi hingga saat ini ada sekitar 28 SPBG. Dari jumlah itu pun tidak semuanya beroperasi dengan kapasitas penuh. Banyak SPBG juga tidak dapat beroperasi karena berbagai kendala. Salah satunya terkait perizinan seperti izin kepala daerah dan izin lingkungan. Selain itu, beberapa SPBG juga mendapatkan penolakan dari warga sehingga belum bisa beroperasi. Kendala teknis yang sering dihadapi misalkan belum banyaknya jaringan pipa gas yang tersedia dan penggunaan sistem mother and daughter station sistem yang membutuhkan biaya investasi dan operasi yang lebih mahal sehingga harga jual CNG lebih mahal dari CNG di online station. Nilai harga jual CNG yang diatur Pemerintah juga terlalu rendah sehingga mengurangi minat pebisnis. Namun jika harga terlalu mahal maka minat konsumen akan berkurang.


LNG station yang tersedia sampai sejauh ini adalah stasiun pengisian LNG di kilang LNG Bontang. Dari kilang LNG fueling station ini, LNG dari kilang Bontang dikirimkan melalui truk kontainer LNG ke sejumlah konsumen. Beberapa konsumen di antaranya adalah sejumlah pertambangan batubara di Kalimantan Timur. LNG digunakan sebagai bahan bakar sejumlah truk tambang. Sebelumnya truk tambang telah dikonversi menjadi berbahan bakar LNG-Diesel Dual Fuel sebagai pilot project (uji coba).

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Rabu, 02 November 2016

HIDROGEN, ENERGI ALTERNATIF YANG SANGAT POTENSIAL UNTUK DIKEMBANGKAN

Gambar 1. Skema pemanfaatan hydrogen fuel cell
Sumber: The National Energy Education Project dalam www.eia.org

Hidrogen (H2) merupakan elemen teringan. Pada temperatur dan tekanan normal, hidrogen berada dalam bentuk gas. Hidrogen dapat terkondensasi menjadi cair pada temperatur -253° Celsius (-423° F). Hidrogen merupakan elemen paling sederhana. Satu atom hidrogen hanya memiliki satu proton. Hidrogen juga merupakan gas yang paling banyak ditemukan di alam semesta. Bintang-bintang seperti matahari mengandung hidrogen yang bertindak sebagai komponen utama.

Matahari pada dasarnya merupakan bola hidrogen dan helium raksasa. Pada inti matahari, atom-atom hidrogen digabungkan untuk membentuk atom helium. Proses ini disebut sebagai reaksi fusi yang kemudian menghasilkan energi sinar matahari. Energi matahari merupakan energi penopang kehidupan. Energi ini memberi kita cahaya dan membantu tumbuhan untuk tumbuh. Energi matahari ini disimpan sebagai energi kimia pada bahan bakar fosil. Sebagian besar energi yang kita gunakan saat ini sebenarnya berasal dari energi matahari.

Gas hidrogen lebih ringan dari udara sehingga akan cepat naik ke angkasa dan keluar dari atmosfer bumi. Inilah penyebab mengapa H2 tidak ditemukan sebagai gas di bumi. Gas hidrogen hanya ditemukan dalam bentuk senyawa dengan elemen lainnya. Hidrogen dikombinasikan dengan oksigen, membentuk air (H2O). Hidrogen dikombinasikan dengan karbon, membentuk bermacam-macam senyawa seperti methane (CH4), batubara, dan minyak bumi. Hidrogen dapat ditemukan pada semua benda yang tumbuh. Hidrogen sebagai senyawa juga ditemukan melimpah pada lapisan kerak bumi. Hidrogen memiliki kandungan energi terbesar dibandingkan bahan bakar lain dari sisi beratnya (tiga kali lebih besar dari bensin) tetapi memiliki kandungan energi terkecil dari sisi volume (sekitar 4 kali lebih kecil dari bensin).

Hidrogen merupakan sarana pembawa energi seperti halnya listrik. Hidrogen harus diproduksi dari substansi lain. Hidrogen yang ada di bumi tidak berada dalam bentuk yang siap digunakan sebagai bahan bakar. Bahan bakar hidrogen dapat diproduksi dari sumber bahan bakar fosil dan energi terbarukan. Produksi hidrogen dari energi terbarukan merupakan proses yang relatif mahal.

Kini, hidrogen masih belum banyak digunakan secara luas. Akan tetapi hidrogen memiliki potensi besar di masa mendatang. Hidrogen dapat diproduksi dari berbagai macam sumber seperti air, bahan bakar fosil, atau biomassa. Hidrogen biasanya juga merupakan produk sampingan dari banyak proses kimia.

Karena hidrogen tidak eksis di permukaan bumi sebagai gas, hidrogen harus diekstraksi dari senyawanya dengan elemen lain. Atom hidrogen dapat dipisahkan dari molekul air, biomassa atau gas alam.

Terdapat dua metode yang umum digunakan untuk memproduksi hidrogen, yakni steam reforming dan electrolysis (pemecahan molekul air / water splitting). (www.eia.org).

Steam reforming (pembentukan uap) merupakan metode yang banyak digunakan dan juga paling murah untuk memproduksi hidrogen. Pada proses ini gas alam diuraikan dengan menggunakan uap panas (steam) yang dipadukan katalis dan kemudian dihasilkan gas yang kaya kandungan hidrogen. (AGA, 2014). Metode ini digunakan di industri untuk memisahkan atom hidrogen dari karbon pada senyawa methane (CH4). Proses steam reforming menghasilkan emisi carbon dioksida (CO2).

Electrolysis merupakan proses yang memisahkan hidrogen dari air dengan menggunakan arus listrik. Proses ini dapat digunakan pada skala kecil dan juga besar. Electrolysis tidak menghasilkan emisi. Produknya adalah hidrogen dan oksigen. Namun demikian, jika listrik yang digunakan pada proses ini berasal dari pembangkit yang menggunakan bahan bakar fosil, maka akan terdapat produk emisi dan karbon dioksida sebagai produk sampingan. Untuk itu, listrik yang digunakan dalam proses ini seharusnya dari sumber energi terbarukan seperti energi angin dan matahari.

Selain kedua metode di atas, para peneliti di dunia sedang mengembangkan metode-metode lainnya. Beberapa di antara metode yang sedang dikembangkan adalah penggunaan mikroba yang menggunakan cahaya untuk menghasilkan hidrogen, mengkonversi biomassa menjadi cairan dan kemudian memisahkan hidrogen yang dikandungnya, menggunakan teknologi energi matahari untuk memisahkan hidrogen dari molekul air. (www.eia.org).

Hingga sejauh ini hidrogen digunakan pada beberapa aplikasi. Di Amerika Serikat, hidrogen banyak digunakan di sektor industri. Misalnya untuk pengolahan minyak, pengolahan logam, produksi pupuk, dan pemprosesan makanan. National Aeronautics and Space Administration (NASA) merupakan pengguna hidrogen terbesar sebagai bahan bakar roket. Penggunaan hidrogen cair sebagai bahan bakar untuk pertama kalinya telah dilakukan pada tahun 1950-an. Bahan bakar hydrogen fuel cell digunakan untuk mensuplai tenaga listrik pada sistem kelistrikan pesawat ruang angkasa. (www.eia.org).

Di Amerika Serikat, gas alam merupakan bahan baku dari 95% bahan bakar hidrogen yang diproduksi. Jumlah total hidrogen yang diproduksi Amerika Serikat adalah sekitar 9 juta ton per tahun. Sebagian besar hidrogen ini digunakan untuk keperluan industri dan kilang minyak. Sembilan juta ton hidrogen ini cukup untuk mengisi sekitar 35 juta kendaraan berbahan bakar hidrogen (FCEV). (Joan Ogden dkk., 2014).

Hydrogen fuel cell memproduksi listrik dengan menggabungkan atom hidrogen dan atom oksigen. Penggabungan ini menghasilkan arus listrik. Hydrogen fuel cell sangat efisien, tetapi sangat mahal untuk dibuat. Terdapat banyak tipe fuel cell yang dapat digunakan untuk berbagai aplikasi. Fuel cell skala kecil telah dikembangkan untuk menyuplai listrik pada laptop, handphone, dan aplikasi militer. Fuel cell skala besar dapat menjadi sumber energi darurat pada gedung-gedung dan juga di daerah terpencil yang belum memiliki jaringan listrik. (www.eia.org).

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Selasa, 01 November 2016

TANTANGAN PENGELOLAAN ENERGI DI MASA DEPAN




Ternyata tidak terasa telah lebih dari satu abad manusia memasuki era industri. Era industri ini ditandai dengan konsumsi energi yang semakin masif untuk menyokong aktivitas industrialisasi di segala segmen kehidupan. Dan kini era industrialisasi berkembang lebih jauh lagi dengan dimulainya era teknologi informasi. Di era teknologi informasi ini, aktivitas manusia semakin tergantung kepada pasokan energi. Tanpa energi, peralatan-peralatan berbasis teknologi informasi tidak akan dapat beroperasi. Hal ini mengancam aktivitas keseharian manusia yang telah semakin tergantung pada teknologi informasi. Dengan demikian, tuntutan terhadap pasokan energi yang berkelanjutan dan stabil menjadi suatu hal yang semakin mendesak.

Dalam ruang lingkup secara global, dapat dikatakan bahwa di era ini tidak ada satu pun negara di dunia ini yang tidak memerlukan energi. Energi telah semakin menjadi elemen yang sangat penting dalam menentukan derajat hubungan antar negara, baik secara strategis maupun ekonomis. Upaya pemenuhan energi yang terjadi selama ini yang dilakukan antar negara semakin cenderung untuk menganut prinsip saling ketergantungan. Hal ini menjadi ciri khas proses globalisasi ekonomi.

Tingkat hubungan antar negara di bidang energi dapat diukur dengan tingkat ketergantungannya dengan negara lain. Tingkat ketergantungan yang dimaksud dapat berupa ketergantungan yang simetris (setara) ataupun asimetris (tidak setara). Di sisi lain, dalam konteks isu global, keamanan energi tidak dapat berdiri sendiri melainkan saling berhubungan dengan isu global lain seperti isu lingkungan (perubahan iklim global), pengembangan dan penguasaan teknologi, isu geopolitik, ekonomi, sosial, sumber daya manusia, dan lain-lain.

Energi merupakan motor penggerak bagi kegiatan industri dan pertumbuhan ekonomi nasional. Keduanya sangat krusial bagi kekuatan nasional. Tidak hanya itu, energi juga merupakan penggerak bagi segala kegiatan di semua sektor. Mulai dari rumah tangga, perdagangan, transportasi, industri, hingga ke sistem komunikasi dan informasi. Tanpa keberadaan energi yang cukup maka masing-masing sektor ini bisa terancam pertumbuhan dan perkembangannya. Ancaman terhadap pertumbuhan salah satu sektor berarti ancaman terhadap kekuatan nasional secara keseluruhan.

Krisis minyak tahun 1973 telah meningkatkan kesadaran global mengenai pentingnya isu keamanan energi (energy security). Pada saat itu, negara-negara OPEC melakukan penghentian pasokan minyak ke Amerika Serikat dan beberapa negara sekutunya yang dianggap berperan dalam agresi Israel di Palestina. Hal ini cukup memberikan dampak signifikan saat itu, terutama bagi negara-negara importir minyak besar seperti Amerika Serikat. Embargo pasokan minyak mengakibatkan naiknya harga minyak secara signifikan dan melumpuhkan kegiatan perekonomian global.

Semenjak saat itu, energy security menjadi isu global yang semakin penting. Negara-negara, kelompok-kelompok negara, serta institusi-institusi internasional semakin intens melakukan kajian-kajian dalam rangka melakukan perbaikan dan peningkatan terhadap kinerja sistem energy security. Upayanya meliputi cakupan yang luas, baik pada level lokal atau domestik, maupun dalam level regional, dan bahkan internasional.

Aktvitas pengelolaan dan pemanfaatan energi tidak semata-mata hanya ditujukan untuk memenuhi kebutuhan aktivitas manusia. Pemanfaatan energi seharusnya juga dikelola secara bijak sehingga energi dapat terus memberikan manfaat dalam jangka panjang dan berkelanjutan serta memberikan dampak positif bagi lingkungan. Hal ini menjadi penting berhubung sejumlah sumber “energi tak terbarukan” dapat habis dipakai karena jumlahnya di alam yang terbatas. Sedangkan sumber “energi terbarukan” yang dapat terus beregenerasi secara alami, ternyata belum mampu menggantikan secara penuh peranan “energi tak terbarukan” dari kelompok energi fosil yang telah mendominasi penggunaan energi selama lebih dari satu abad. Karena itu muncullah kaidah keamanan energi atau ketahanan energi (energy security/energy resilience) dimana menjadi suatu isu yang perlu diperhatikan dalam setiap pengelolaan dan pemanfaatan sumber-sumber energi.

Akhir-akhir ini, energy security semakin luas cakupan diskusinya. Bukan hanya berdiskusi mengenai minyak bumi, tetapi juga gas alam, batubara, kelistrikan, nuklir, serta energi baru dan terbarukan. Cakupan lintas sektoral energy security juga semakin luas, dimana energy security kini menjadi elemen yang saling terintegrasi dengan elemen-elemen lainnya seperti stabilitas geo politik, pertumbuhan ekonomi, ketahanan lingkungan dan perubahan iklim, sumber daya manusia, serta inovasi dan teknologi.

Hingga sejauh ini, minyak bumi diproyeksikan masih akan menjadi sumber energi utama dunia selama beberapa dekade ke depan. Karenanya seringkali fokus evaluasi energy security adalah pada pengamanan pasokan minyak dan peningkatan produksi domestik serta pada upaya mengurangi ketergantungan terhadap minyak impor. Sementara itu, energi fosil lainnya seperti batubara dan gas alam juga masih akan memegang peranan sangat penting dalam bauran energi dunia dalam beberapa waktu ke depan. Walaupun demikian, dalam pembahasan energy security, peranan batubara dan gas alam belum sekrusial peranan minyak bumi. Hal ini disebabkan pada minyak bumi telah tercipta pasar yang terintegrasi secara global, sedangkan pada gas alam dan batubara masih belum terbentuk pasar yang terintegrasi secara global.

Dapat dikatakan, selama hampir setengah abad semenjak krisis minyak 1973, masyarakat dunia masih belum bisa melepaskan diri dari ketergantungan terhadap penggunaan energi fosil (minyak, batubara, dan gas alam). Untuk itu, energi terbarukan perlu mendapat perhatian serius dalam rangka menjamin keamanan pasokan energi dunia di masa mendatang. Begitu pula halnya dengan pemanfaatan energi nuklir, perlu mendapat ketegasan dari setiap pemerintahan di dunia mengenai pentingnya penggunaan nuklir demi jaminan pasokan listrik yang murah, handal, serta bebas emisi. Kenyataannya teknologi nuklir juga terus berkembang dan semakin menjamin keamanan dan kehandalan serta semakin mampu bersinergi dengan lingkungan sekitar.

Upaya-upaya untuk melangkah ke penggunaan energi non fosil ini merupakan langkah strategis untuk menghindari krisis energi. Hal ini juga berarti upaya untuk menjaga stablitas keamanan global dan mencegah terjadinya konflik dan peperangan yang dilatarbelakangi pengamanan produksi dan pasokan energi primer, khususnya minyak.

Sebagai negara berkembang, Indonesia merupakan bagian dari masyarakat Internasional yang memiliki potensi pertumbuhan ekonomi yang cukup besar. Sampai sejauh ini, pertumbuhan ekonomi Indonesia termasuk salah satu yang tertinggi di Dunia. Akan tetapi pertumbuhan ekonomi yang demikian tinggi, jika tidak diimbangi dengan kemampuan memenuhi kebutuhan energi yang cukup maka akan mengakibatkan permasalahan yang serius.

Dalam upaya pengelolaan energinya ini, Indonesia menghadapi beberapa tantangan:
  1. Semakin turunnya produksi minyak dalam negeri sedangkan di sisi lain permintaan dan konsumsi energi semakin meningkat seiring dengan tuntutan pertumbuhan ekonomi dan jumlah penduduk yang semakin tinggi.
  2. Kilang minyak yang dimiliki telah tua dan semakin tidak efisien. Kapasitas pengolahan minyak dalam negeri tidak mampu memenuhi kebutuhan dalam negeri yang mendorong Indonesia untuk semakin tergantung pada minyak impor.
  3. Belum termanfaatkannya sumber-sumber energi alternatif di dalam negeri secara maksimal, misalnya gas alam, nuklir, batubara, dan energi baru dan terbarukan. Masing-masing energi alternatif ini memiliki tantangan-tantangan tersendiri dalam upaya pengimplementasiannya.
  4. Sulitnya upaya pendistribusian energi ke seluruh wilayah Indonesia yang sedemikian luas dan terpisah-pisah dalam bentuk negara kepulauan dimana membutuhkan sejumlah infrastruktur pendukung yang biaya investasinya tidak sedikit.
  5. Lemahnya sektor birokrasi dan implementasi kebijakan dalam mendorong pertumbuhan infrastruktur sektor energi.
  6. Subsidi sejumlah bahan bakar seperti BBM, LPG, dan listrik dimana menjadi beban negara yang masih sulit untuk dihapuskan sehubungan dengan nilai politis yang tinggi.
  7. Regulasi mengenai insentif sektor kelistrikan dipandang belum mampu menarik minat investor.
  8. Adanya sejumlah target-target kebijakan sektor energi dan lingkungan yang tinggi yang harus dica[ai dalam periode yang relatif singkat sehingga dibutuhkan upaya nyata yang signifikan dan konsisten dalam upaya mencapainya.
Dalam menghadapi tantangan-tantangan tersebut tentu saja tidak hanya dibutuhkan ide-ide dan wacana yang cerdas, namun juga akan dibutuhkan implementasi nyata yang konsisten. Kebijakan-kebijakan yang disusun secara bagus tidak akan ada artinya jika tidak dibarengi dengan pelaksanaannya secara koheren dan konsisten. Selain itu, perlu selalu dibuka ruang untuk melakukan perbaikan secara terus-menerus. Hal ini dalam upaya terus menyesuaikan diri dengan perkembangan teknologi dan pasar energi yang dinamis.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Senin, 31 Oktober 2016

PEMANFAATAN ENERGI DI MASA LAMPAU


Pada awal peradaban manusia, dimana aktivitas manusia masih sederhana, energi yang paling banyak dimanfaatkan adalah yang secara alami mudah didapatkan di alam tanpa melalui proses yang rumit. Misalnya untuk pemanasan dan pengeringan, manusia lebih banyak memanfaatkan sumber panas alami matahari. Selain itu, dalam proses aktivitas rumah tangga (misalkan memasak) digunakan api dari pembakaran kayu bakar. Api juga digunakan sebagai cara untuk memproduksi keramik tradisional.


Ketika manusia memasuki era logam, api juga digunakan dalam proses industri sederhana seperti pembuatan peralatan-peralatan dan senjata-senjata dari bahan logam. Selain berasal dari pembakaran kayu bakar, sumber pembangkitan api dapat juga berasal dari jerami dan bahkan kotoran hewan ternak yang dikeringkan.


Di sektor transportasi, digunakan tenaga hewan seperti kuda, keledai, unta, bahkan gajah. Tenaga angin dimanfaatkan melalui teknologi layar, kemudian digunakan sebagai penggerak perahu dan kapal. Arah angin yang bersifat musiman menjadi sangat penting dalam penentuan kegiatan transportasi laut. Sedangkan transportasi udara, di masa lalu, masih menjadi mitos-mitos.


Di masa lalu, sektor pertanian dan industri sederhana masih banyak menggunakan tenaga manusia. Dalam beberapa kegiatan, tenaga hewan juga digunakan untuk membantu pekerjaan-pekerjaan manusia. Misalnya dalam menggerakkan alat penggiling (mill), menimba air dari sumur dan membajak sawah dan ladang. Pekerjaan-pekerjaan tersebut juga dapat dilakukan dengan menggunakan teknologi sederhana lainnya yang memanfaatkan potensi alami arus air sungai dan aliran angin (kincir air dan angin).


Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Minggu, 30 Oktober 2016

ENERGI TERBARUKAN


Konsep energi terbarukan mulai dikenal luas pada tahun 1970-an. Konsep ini diperkenalkan secara masif sebagai upaya untuk mengimbangi pengembangan energi berbahan bakar nuklir dan fosil. Krisis minyak yang terjadi tahun 1970-an telah memicu upaya-upaya aktif untuk menggenjot pertumbuhan pemanfaatan energi terbarukan secara global.

Definisi paling umum energi terbarukan adalah sumber energi yang dapat dengan cepat dipulihkan kembali secara alami, dan prosesnya berkelanjutan. Karakteristik energi terbarukan berbeda dengan energi fosil dan nuklir yang keberadaan bahan bakunya di alam terbatas sehingga sewaktu-waktu bisa habis. Energi terbarukan bersumber dari potensi-potensi alami yang terkandung di alam misalkan air, kelautan, matahari, dan angin. Energi terbarukan juga dapat memanfaatkan bahan baku alam yang dapat beregenerasi secara alami dan berkelanjutan seperti bahan nabati dan hewani.

Hingga sejauh ini dapat dikatakan bahwa upaya peralihan dari sumber energi konvensional ke energi terbarukan cukup sulit dan lambat. Bahkan ketika terdapat dukungan publik yang kuat sekalipun. Hal ini tidak lepas dari keterbatasan-keterbatasan alami yang dimiliki energi terbarukan. Jika keamanan energi dan pengurangan emisi diupayakan untuk dicapai melalui peningkatan peranan energi terbarukan, misalnya tenaga angin, maka sistem kelistrikan yang ada
harus disesuaikan dengan karakteristik pasokan listrik energi terbarukan yang bersifat intermittent dan cenderung tidak stabil. Hal ini merupakan sifat alami beberapa energi terbarukan yang sangat tergantung pada kondisi alam.

Oleh karena itu, pemanfaatan energi terbarukan akan membutuhkan grid (jaringan) listrik yang lebih besar dan fleksibel. Di sisi lain, penggunaan secara luas teknologi penyimpanan listrik (power storage) mungkin masih belum cukup efisien secara keekonomian karena relatif mahal.

Negara - negara yang telah masif penggunaan energi terbarukannya masih belum melakukan transformasi sistem kelistrikan secara penuh. Salah satunya Denmark dimana pada tahun 2009, sebanyak 27% listrik disuplai dari sumber energi terbarukan, mayoritas tenaga angin. Jerman juga cukup agresif dalam utilisasi energi terbarukan, dimana khususnya setiap hari Sabtu pada musim panas, 50% pasokan listrik berasal dari tenaga matahari. Sedangkan pada hari lainnya ketika paparan sinar matahari cukup kecil dan permintaan listrik besar, peranan tenaga matahari cukup kecil. Pemerintah Jerman merencanakan untuk menutup fasilitas pembangkit tenaga nuklir sebagai respon terhadap bencana Fukushima, Jepang, dan penolakan publik. Jerman dalam beberapa waktu ke depan akan semakin tergantung kepada energi terbarukan. Pada kenyataannya, pola jangka pendek proyek kelistrikan yang disusun Jerman adalah peningkatan ketergantungan terhadap batubara yang sebenarnya merupakan tulang punggung energi Jerman di era tradisional. (WEF, 2012).

Sumber-sumber dan teknologi-teknologi energi terbarukan dapat dikatakan cukup bervariasi secara luas. Secara umum, beberapa energi terbarukan digunakan dalam pembangkitan listrik, sedangkan yang lainnya dimanfaatkan untuk menghasilkan panas yang digunakan untuk pemanasan ruangan atau industri serta beberapa lainnya digunakan untuk bahan bakar sektor transportasi.

Teknologi energi terbarukan yang digunakan untuk membangkitkan listrik cukup fleksibel dalam skala dan jenis penggunaan. Sumber-sumber energi terbarukan ini dapat dieksploitasi secara lokal, digunakan baik untuk memusatkan atau menyebarkan pembangkitan energi listrik. Sumber energi terbarukan ini terdapat secara alami di alam. Keamanan pasokan energi terbarukan lebih bersifat spesifik kedaerahan karena tergantung pada potensi lokal. Masing-masing sumber energi terbarukan memiliki karakteristik produksi listrik dengan output volume yang bervariasi dan dinamis. Walaupun hal tersebut selama ini dianggap sebagai suatu permasalahan, sebenarnya karakteristik ouput listrik seperti ini dapat diarahkan pada kehandalan dan keamanan pasokan listrik.

Caranya adalah dengan menyesuaikan kondisi pasokan energi terbarukan yang unik ini dengan karakteristik permintaan yang juga memiliki pola-pola tertentu. Biasanya konsumsi listrik akan meningkat pada malam hari, dan rendah pada dini hari. Upaya penyesuaian pasokan dengan kondisi permintaan, secara khusus akan mempertimbangkan waktu-waktu dimana output energi listrik teknologi energi terbarukan akan sangat tinggi. Prediksi-prediksi terhadap output pembangkitan listrik harus dilakukan seakurat mungkin dengan memperhatikan kondisi alam. Selain itu, diperlukan juga pengaturan sistem kelistrikan yang cermat agar mampu mengakomodir sumber energi yang berbeda-beda guna membentuk suatu sistem pasokan listrik yang paling optimal dalam menyesuaikan dengan karakteristik permintaan yang memiliki polapola khusus.

Sistem energi terbarukan diposisikan sebagai alternatif guna mengurangi resiko akibat adanya gangguan pasokan energi dan mengurangi ketergantungan terhadap impor bahan bakar. Energi terbarukan secara luas cukup tersebar di banyak lokasi dan dapat menjadi pilihan alternatif untuk membangkitkan listrik, menghasilkan panas dan memproduksi bahan bakar kendaraan. Sebagai tambahan, penggunaan energi terbarukan dapat mengurangi secara signifikan emisi green house gas (GHG) atau gas rumah kaca dan keuntungan-keuntungan bawaan lainnya.

Penggunaan energi terbarukan tidaklah bebas dari resiko. Bentuk pasokan sangat bervariasi akibat ketersediaan di alam yang cukup bervariasi dari sisi bentuk potensinya. Pada gilirannya hal ini menyebabkan adanya resiko. Jika terjadi kegagalan pasokan dari salah satu bentuk energi terbarukan dalam suatu sistem, hal ini akan dapat mempengaruhi kehandalan pasokan energi secara keseluruhan. Selain itu, biaya-biaya pemanfaatan energi terbarukan relatif lebih tinggi dibandingkan pasokan energi konvensional.

Dewasa ini, terdapat trend dimana harga energi terbarukan cenderung turun. Apabila trend ini terus berlangsung maka dalam beberapa waktu ke depan energi terbarukan akan semakin kompetitif dengan energi fosil. Contohnya adalah kecenderungan pertumbuhan pemanfaatan energi tenaga angin dan matahari yang tumbuh hingga mencapai sekitar 20% dalam sepuluh tahun terakhir.

Referensi : Apriyanto, Alek Kurniawan. 2015. Membangun Energy Security Indonesia. Jakarta : Pustaka Muda.
Buku ini tersedia pada : https://www.tokopedia.com/bukuqu/membangun-energy-security-indonesia

Selasa, 16 Februari 2016

EFEK TURUNNYA HARGA MINYAK PADA SEKTOR ENERGI

Harga energi fosil (minyak, gas, batubara) dipengaruhi oleh pasokan (supply) dan permintaan (demand). Selain itu harga minyak dipengaruhi juga oleh semakin strategisnya posisi minyak dalam kehidupan manusia, adanya monopoli, dan adanya permainan geopolitik. 

Ketika harga minyak tinggi, terjadi perkembangan signifikan shale oil di Amerika Utara. Amerika Utara diproyeksikan akan berswasembada minyak berkat teknologi shale oil dan akan menjadi salah satu eksporter minyak besar dalam beberapa waktu ke depan. Negara-negara produsen besar minyak lain juga Sedang berupaya meningkatkan pangsa pasarnya. Hal ini semua mengancam pangsa pasar OPEC yang telah menguasai pasar minyak selama beberapa dekade. 

Untuk mengamankan posisinya OPEC meningkatkan produksi minyak untuk memperbanyak pasokan minyak ke pasar global agar harganya turun sehingga dapat menghambat perkembangan shale oil dan mengamankan pangsa pasarnya dalam jangka panjang. 

Selain itu melambatnya perkonomian dunia, terutama di negara ekonomi baru seperti China membuat minyak yang melimpah tidak terserap secara optimal. 

Pasokan minyak bertambah signifikan sedangkan permintaan sedang melemah. Hal ini merupakan pemicu turunnya harganya secara signifikan.


Harga minyak biasanya juga dijadikan alat ukur sehat atau tidaknya kondisi perekonomian global. Ketika harga minyak naik, maka naiknya harga minyak cenderug menjadi rem bagi pertumbuhan ekonomi global. Ketika perekonomian dunia melemah/melambat maka kecenderungannya adalah harga minyak turun. 


Secara umum, harga minyak dapat dikatakan seiring sejalan dengan harga gas alam. Seiring dengan rendahnya minyak maka harga gas alam juga turut turun. Harga gas alam cenderung selalu lebih murah daripada minyak. 


Dengan jatuhnya harga minyak ini berarti pengembangan energi terbarukan menjadi kurang menarik. Biaya investasi dan operasional dan end produk dari energi terbarukan cenderung lebih mahal dari minyak. Harga minyak dan energi fosil lainnya yang tinggi merupakan salah satu faktor yang memicu peralihan ke energi terbarukan yang lebih ramah lingkungan. 

Memang terdapat teori yang menyebutkan bahwa jatuhnya harga minyak seharusnya tidak berhubungan dengan energi terbarukan secara keseluruhan. Sejumlah pihak beralasan karena energi terbarukan umumnya merupakan sumber pembangkit listrik. Sedangkan minyak telah jarang digunakan sebagai bahan bakar pembangkit listrik. 

Akan tetapi perlu diingat bahwa bahan bakar fosil lain seperti gas alam dan batubara memiliki peranan besar dalam sektor pembangkitan listrik. Sementara itu, harga  gas alam, seperti telah dijelaskan sebelumnya, cenderung mengikuti harga minyak. Sedangkan batubara tentu lebih rendah lagi harganya dibandingkan minyak dan gas alam. 

Dengan demikian, sekarang, faktor pendorong pengembangan energi terbarukan hanya tinggal komitmen pemerintahan dunia dalam mensukseskan kebijakan-kebijakan lingkungan dan perubahan iklim. Harga minyak tidak lagi menjadi salah satu faktor pendorong pengembangan energi terbarukan berhubung harganya yang jatuh secara dramatis. 

Berhubung harga minyak memang susah diprediksi maka tinggal sang waktulah yang akan menjawabnya. 😅

Minggu, 14 Februari 2016

MASA DEPAN ENERGY SECURITY



Pada awalnya, isu energy security hanya fokus pada isu keterjangkauan energy. Khususnya mengenai masalah geopolitik yang mempengaruhi suplai minyak. Kini cakupan isu energy security semakin luas.

Semakin pesatnya perkembangan eksplorasi energi, termasuk non conventional oil&gas, energi baru dan terbarukan, semakin meningkatkan potensi ketersediaan sumber energi di berbagai wilayah. Selain itu biaya pengembangan dan harga energi alternatif ini semakin lama cenderung semakin turun karena terjadinya perkembangan teknologi. Hal ini semakin meningkatka  potensi diversifokasi sumber-sumber energi.

Turunnya harga minyak secara cepat sejak pertengahan tahun 2014 lalu semakin membentuk kesadaran masyarakat dunia bahwa terjadinya fluktuasi harga minyak tidak hanya dipengaruhi oleh efek kondisi geopolitik dan terganggunya pasokan dan permintaan minyak. Perkembangan teknologi dan motif negara-negara produsen untuk menyelamatkan market share (pangsa pasar) juga merupakan faktor pendorong jatuhnya harga minyak. Selain itu terjadinya perlambatan perkembangan perekonomian global, terutama China, juga memiliki pengaruh. Jatuhnya harga minyak juga menyebabkan jatuhnya investasi di sektor hulu.

Di era digital ini, sektor energi banyak mendapat keuntungan. Sistem yang terdigitalisasi sangat membantu meningkatkan akurasi, efisiensi, dan meningkatkan keamanan. Namun demikian, perkembangan teknologi digital juga menimbulkan potensi serangan cyber yang dapat mengganggu sistem pengelolaan energi. Fasilitas-fasilitas energi harus diperlakukan sebagai aset vital yang penting bagi national security.

Bagi negara-negara yang menggantungan pemasukan negara dari penjualan minyak, maka jatihnya harga minyak berarti mengurangi revenue. Hal ini meningkatkan kerentanan terjadinya gejolak sosial dan ekonomi di negara-negara produsen minyak. Namun bagi negara-negara konsumen minyak, jatuhnya harga minyak berarti peningkatan keuntungan.

Dengan demikian, makin lama cakupan permasalahan energy security makin luas dan kompleks sehingga perlu upaya global secara bersama-sama dalam meningkatkan energy security, baik di level nasional, regional maupun global.

Seperti yg disebutkan di paragraf terakhir: The most important thing for us to remember about energy security over the next 10 years is that it’s not about “them”: it’s about “us”.

Senin, 02 November 2015

ETIKA SALING BERDAKWAH SESAMA MUSLIM


Semoga Anda-Anda yang berniat mendakwahi dan mengajak saudara-saudaranya kembali kepada sunnah dapat lebih mengutamakan kasih sayang dalam berdakwah. 

Bukankah Allah berfirman, "Maka disebabkan rahmat Allah-lah kamu berlaku lemah lembut terhadap mereka. Sekiranya kamu bersikap keras lagi berhati kasar, tentulah mereka menjauhkan diri dari sekelilingmu." (QS. Ali Imron : 159).  

Dan bukankah Rasulullah bersabda, "Sesungguhnya lemah lembut tidak berada pada sesuatu kecuali pasti menjadikannya indah, dan tidaklah lemah lembut dihilangkan dari sesuatu kecuali pasti menjadikannya buruk." (HR. Muslim no. 2594, dari 'Aisyah). 

Dan semoga juga bagi Anda-Anda yang diajak kembali kepada Al Quran dan Al Hadis oleh Saudaranya, tidak mudah panas hati dan mencela balik dengan hardikan yang lebih kasar. Akan tetapi selalu berbaik sangkalah karena sebenarnya niat saudaramu itu baik. 

Bukankah Allah berfirman, "Wahai orang-orang yang beriman, jauhilah oleh kalian kebanyakan dari prasangka (zhan) karena sesungguhnya sebagian dari prasangka itu merupakan dosa." (QS. Al Hujurat : 12)

Dan bukankah Rasulullah bersabda, "Hati-hatilah kalian dari prasangka buruk (zhan) karena zhan itu merupakan ucapan yang paling dusta. Janganlah kalian mendengarkan ucapan orang lain dalam keadaan mereka tidak suka. Janganlah kalian mencari-cari aurat/cacat/cela orang lain. Janganlah kalian berlomba-lomba untuk menguasai sesuatu. Janganlah kalian saling hasad, saling benci, dan saling membelakangi. Jadilah kalian hamba-hamba Allah yang bersaudara sebagaimana yang Dia perintahkan. Seorang muslim adalah saudara bagi muslim yang lain, maka janganlah ia menzalimi saudaranya, jangan pula tidak memberikan bantuan kepada saudaranya dan jangan merendahkannya...."(HR. Bukhari No. 6066 dan Muslim no. 6482). 

Selanjutnya berdiskusilah dengan cara yang baik dan hindari perdebatan, untuk kemudian mencari mana pendapat yang paling mendekati Al Quran dan Sunnah, sesuai praktek dan pemahaman Rasulullah dan para Sahabatnya, generasi tabi'in, generasi tabi'ut tabi'in dan jumhur ulama setelahnya yang mengikuti cara (manhaj) mereka. Selanjutnya berlomba-lombalah dalam mempraktekkannya secara konsisten dan mendakwahkannya kepada yang lain.  

Allah berfirman, "Jika kalian berselisih tentang sesuatu maka kembalikanlah ia kepada Allah dan Rasul-Nya, jika kamu benar-benar beriman kepada Allah dan hari kemudian. Yang demikian itu lebih utama (bagimu) dan lebih baik akibatnya. (QS. An Nisa' : 59). 

Jika telah demikian maka Insya Allah, umat Islam akan kembali kuat karena kembali tumbuhnya semangat beramar ma'ruf nahi munkar dan semangat menegakkan sunnah dan meninggalkan perkara yang subhat apalagi haram. 

Allah berfirman, "Kamu adalah Ummat yang terbaik yang dilahirkan untuk manusia, menyuruh kepada yang ma'ruf dan mencegah dari yang munkar." (QS. Ali Imron : 110).